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Abstract—In this consider the nonlinear

eigenvalue problems
: u'(t)ia(t)u(t) = Ah(t) f (t,u(t)), te(0,),
{U(O) =u(d),
where 4 >0, a e C((0,1),[0,%)), he C((0,1),[0,0)),
and there exist t,€(0,1) , such that h(t,)>0 .
f € C([0,%),[0,2)), f(0)=0, f(s)>0,5>0.
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I. INTRODUCTION

The first-order periodic boundary value problems play a
very important role in many aspects. such as economy,
finance, insurance, population structure and so on. Therefore,
the existence of positive solutions is widely concerned by
many scholars at home and abroad, and many rich and

profound results have been obtained 10T For example, the
behavior of animal blood red blood cells, the survival
competition between the two populations and the frequency
of the circuit signals can be depicted by the first order
periodic boundary value problem
u'(t) =-a(t)g(u(t))+Ab(t) f (u(t-z(1)), teR, L)
u(0) = u(t + w), '

with parameters.

In particular, Peng M yses fixed point theorems on cone
to study the following questions

{u’(t)+ f(t,u(t))=0, te(0,T),
u(0) =u(T),
Where asT > 0, nonlinear term f € C((0,T)xR,R),

The main results are as follows:
Theorem A. Assume that there exists a positive number

M >0 ,such that Mx— f (t,x) >0 for x>0,teJ .If

(1.2)

(AD) liminf min M>0 limsup max ——= G u)
u—0* te(0T) U EOT)
(A2) liminf min M>O, limsup max few <0

u—>+o  te(0T) usot t0T) U

then, PBVP (1.2) has at least one positive solution.
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Tisdell ) uses Leray-Schauder degree and fixed point
theory to discuss the first order periodic differential system

u'(t) +a(tu(t) = f(t,u(t)), te(0,),
u0) =u(),

Thus, we obtain some sufficient conditions for the existence

of positive solutions of (1.3) .

Inspired by the above literatures, we use the Dancer’s
bifurcation to study the global structure of positive solutions
for following periodic boundary value problems

u'(t) +a(t)u(t) = Ah(t) f (t,u(t)), t (0,1,
u(0) =u(),

We make the following assumptions:

(H1) h e C((0,1),[0,)) s continuous, and there exist

t, €(0,1), such thath(t,) >0 ;
(H2) f eC([0,),[0,)), f(0)=0, f(s)>0,5>0;
(H3) a e C((0,2),[0,+0));

(1.3)

(1.4)

(H4) f, = oo, where f, = lim ).
s>0"  §
(H5) f_ €[0,0], where f_ =Ilim fis)

The main results of the present paper are as follows:
Theorem 1.1. Let (H1) - (H5) hold. Let

E={ueC[0]] | u(0) =u(1)} Let X be the closure of the
set of positive solutions for (1.4) in E .
(a) If f_=0 then there exists a sub-continuum ¢ of
> with (0,0) € £ and

Proj,¢ =[0,).
(b) If f_ €(0,00), then there exists a sub-continuum ¢ of
> with (0,0) € £ and

Proja o0, “)

()i f =00,
Y with (0,0) e, Proj,< is a bounded closed interval,
and ¢ approaches (0, ) as ||u|| —> 00,

Theorem 1.2.Let (H1) - (H5) hold.

(d)1f f_ =0,then (1.4) has at least one positive solution
for 1 € (0,00).

(e)1f f_ €(0,00), then (1.4) has at least one positive

then there exists a sub-continuum ¢ of

Www.ijeas.org



Global structure of positive solutions for superliner first-order periodic boundary value problems

solution for A € (0, fﬁ) .

(f)1f f_ =00, then (1.4) has at least one positive solution

for 1e(0,4).

Il.  SUPERIOR LIMIT AND COMPONENT

Y =C[0,1]isaBanachspace, K ={u Y | u(t)>0,t[0,1]}-

The norm in C[0,1] is defined as follows

|u|0 = max|u(t)|.

te[0,1]

Define an operator T : K —Y by,

Tu(t) = j: H (t,s)h(s) f (u(s))ds, te[01].
Where

J"a(e)de
e S
: , 0=t=<s<],
_[Oa(g)de 1
Hts)=4% | ~
La(&)d&
& oss=t=<1.
l_e—j'oa(e)de
7J’1a(a)de
Denote o =€ , then
1
T <H(t,8) <, (,5) € (0)x(01) . (2.1)
o - l1-o

Denote the cone Pin Y by
P={ueY|u(t)2oful.te (0D}

Define an operator T, : P — Y by,

T,u(t) = /IJ': H (t,s)h(s) f (u(s))ds, t<[0,1].(2.2)

Definition 2.1. Let Y be a Banach space and
{C, | n=21,2,K }be a family of subsets of Y . Then the

superior limit D of {C_} is defined by
D:=limsupC, ={xeY |3{n}<=N

n—oo

and x, €C, ,suchthatx, — x}

Definition 2.2. A component of a set M is meant a maximal
connected subset of M .

Lemma 2.3. Suppose thatY is a compact metric space,
Aand B are non-intersecting closed subsets of Y ,and no
component of intersects both A and B . Then there exist two
disjoint X, and X
thatY = X, UX;, Ac X,,Bc X; .

Lemma 2.4. Let Y be a Banach space, and let {C}be a

compact  subsets such

family of connected subsets of Y , Assume that
(i)thereexistz, € C,,n=12K ,and z" € X , such that

z,>7;

54

(ii) rI]I_)rg r, =0, wherer, =sup{[x|| xeC,}:

(iii) for every R>0, (Y::lCn)m B, is a relatively

compact set of Y
where

Be ={x e X||X|<R}.
Then there exists an unbounded component C in D
andz €C .
Lemma 2.5. Assume that (H1) hold. ThenT, :P — P is

completely continuous.
Lemma2.6. Let (H1)—(H 2)hold. Let

Q, ={ueK||u|<r,r>0} 1fuedQ,,r>0, then
ITu| < AN, LlG(s, s)h(s)ds. (2.3)

Where M, =1+ Egi)r({f (s,u(s))}.

Proof: since Vt €[0], f (u(t)) <M, ,it follows that
ITul<4 j:c;(s, s)h(s) f (s, u(s))ds

<M, [ G(s,s)h(s)ds.
Lemma 2.7. Let(HZ1) hold, and letr(T) be the spectral
radius of T . Then r(T)>0 , and r(T) is a simple

eigenvalue with an eigenfunction ¢ € int K. and there is no

other eigenvalue with a positive eigenfunction.
Lemma 2.8. Let (H1)hold, and let r(T) be the spectral

. 1 . .
radiusof T . Then A: = ﬁ is a simple eigenvalue with an
r

eigenfunction ¢ € int K. and there is the unique eigenvalue

with an eigenfunction @ € intK_ and there is no other
eigenvalue with a positive eigenfunction.

I1l. EIGENVALUE WITH A POSITIVE EIGENFUNCTION
Denote e(t) =1,t €[0,1], and let

Y, =Y pl-11. x|, =inf{p |p>0,xe p[-11]}.

p>0

Set

K, =Y, "K ={x e K|x< pe for some p>0}.
Then

(al) K, isanormal cone of Y, with nonempty interior;

(a2) (Y., ||e) is a Banach space and continuously imbedding
in (Y, 1) -
Notice also that an X € Y, is in int K, the interior of K, in

Y, if and only if X > pe for some p >0 .
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IV. PROOF OF THE MAIN RESULT
To prove the main result , we define f™(s):[0,0) —[0, )
by

f(s), s> (=,00),

fl(s) = n

nf (=)s, 56[0,1].
n n

Then " (s) e C([0, ), [0,0)) with f "™ (s) >0
forall s € (0,00)and (f!"), = nf (%) >0.

By (H3) , it follow that that lim( f ™), = co.
n—oo

and accordingly, (b) hold. (C) can be deduced directly
from the Arzela-Ascoli Theorem and the definition of g[”] .
Therefore , the superior limit of {C!™} ,i.e. D contains an
unbounded connected component C with (0,0) e C .
(a) T, =0.Inthe case, we show that Proj,C =[0, ) .
Assume on the contrary that SUp{A | (4, y)eC}<w,
then there exists a sequence{(£4, Y, )} < C such that

lim|ly, | =, |4] < Cy. (4.0

k—o0

for some positive constant C, depending not onk . From
Lemma 2.5 , we have that i!im”yk | =00 . This together with
—o©

the fact
min y, (t) > oly,| forall 0< o <min{t, 1-t} (4.2)

o<t<l-o

implies that

l!im Y, (t) = oo uniformly for t € [c,1- o] . (4.3)
—>0

Since (£, Y, ) € C , we have that

{YL O +at)y, (1) = #h®g(y, 1), te(0.1),
Y (0) =y, D),
setV, (t) = y, (t) /]|y | - Then|v, [ =1.

Now , choosing a subsequence and relabelling if necessary,
it follows that there exists (¢4, Vi) € [0,C,]1x E with

=1

(4.4)

V*

such that
im(zs,v,) = (1, 00) iin RXE (45)

Moreover, using (4.3) — (4.4) and the assumption f_ =0,
it follows that

Vi (t) +a(t)v.(t) = wh(t)-0, te(0,1)
{v* 0) =v.(2).
And subsequently , V.. (t) =0 fort €[0,1] . This
contradicts (4.5) . Therefore

sup{A|(1,y) eC}=o0.
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(b) f, €(0,00).Inthis case, we show thatp; g[O’fi) .

Let us rewrite (1.4) to the form

u'(t) +a(t)u(t) = Ah(t)g u + Ah(t)E(u(t)), te(0.0)
{u 0)=u().
where £(S) = g(s)—g,,S . Obviously \!fﬂl £(s)/s=0.

Now by the same method used to prove [6,Theorem 5.1], we

A
f
(c) f_ =ooInthiscase, we show that C joins (0,0) with
(0,00) .

Let {(£4, Y, )} < Cbe such that|,uk|+||yk || —> 0 as

may prove thatC joins (0,0) with (—, ).

k—o . then
{YL O +a®)y, (1) = 1h®g(y,(1).t(01)
Yi 0)= Yk @.
If {]|yk|[}is bounded, say, ||yk|| < M, for some M,
depending not on K , the we may assume that
lim 4, =c0..(4.6)
Note that

90 ) 5 inf{@|0< s<M,}>0.
Y (t) S

By condition (H1) , there exist some 0 < & < f# <1such
that h(t) > Ofort € [, ] .So there exists a

constant M, >0 , such that

)20 S M. >0, tefe, A1 @)
Y (t)
Combining (4.6) and (4.7) with the relation

Y, (1) +at)y, (t) = z5,h(t) g(yyk(g” Y, (0).t e (01) (48)

From[3,Theorem 6.1], we deduced that must change its sign
on[e, f] if K islarge enough. This is a contradiction. Hence

{]|yk|[}is unbounded.
Now , taking{(£4, ¥, )} = C be such that

|yi]|— 0 as k — oo (4.9)
We show that lim g, =0 .
k—o
Suppose on the contrary that , choosing a subsequence and
rebelling if necessary, £4, > b, for some constantb, >0 .
Then we have from (4.9) ||yk|| —>

To apply the nonlinear Krein-Rutman Theorem, we
extend f toan odd functiong :R — R by

_[f(s) if >0,
g(s)_{—f(—s) if s<0.
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Similarly we may extend f ("l t0 an odd function

g":R —> RforeachneN.
Now let us consider the auxiliary family of the equations

u'(t) +a(t)u(t) = Ah(t)g™Mu, te(0,),
u(0) =u().
Let¢ € C(R) be such that

9" (u) = (g")ou + £ (u) = nf(%)uw["l(u).

Note that

&)

S

lim
s|>0
Let us consider
Lu—2h(t)(9™)ou = 2h(t)¢™ (u) (4.10)
As a bifurcation problem from the trivial solutionu =0 .
Equation (4.1) can be converted to the equation

u(t) = Ll H (t, $)[Ah(s)(g™)ou(s) + Ah(s)s "u(s)]ds

= (ALThO(@™)ouOI®) + AL TS ™ (UE)D )
Further we note that | L*[n(-)¢ ™ (u())]| = o(Ju) for
UnearQ inE .

By Lemma 2.7 and the fact (g™™), > 0 , the results of
nonlinear Krein-Rutman Theorem can be stated as follows:
there exists a continuum CI™ of positive solutions of (4.1)
joining to infinity in . Moreover, (4, /(g™),,0) is the only
positive bifurcation point of (4.1) lying on trivial solutions
linru=0.

Proof of Theorem 1.1 Let us verify that{C!"'} satisfies all

of the conditions of Lemma 2.4 . Since
lim ﬁ /111
== (g, nf (E)

Condition () in Lemma 2.4 is satisfied with 2~ = (0,0) .
Obviously

r, =sup{A|+[y| |(4,y) e C"} =0,
ask — oo . This together with (4.3) and condition

=lim

n—o

::0’

(H1) imply that there exist constants ¢, , 3, with
o<a < f, <l-0o ,such that
9(y, ()
Y (t)
for every fixed constant0 < o < min{t, 1—t,} .Thus , we

h() >0 , ll(im,uk =oo forall t e[, ]

have from (4.8) and[3,Theorem 6.1] that y, must change its
signon[ey, B,] ifK is large enough . This is a contradiction.
Therefore lim g, =0.

K <0

Proof of Theorem 1.2 (@) and (b) are immediate

56

consequences of Theorem1.1(a) and (b) , respectively.
To prove (C) , we rewrite (1.4) to

U= 2] H(tSN(E) Fu(E)Hs =T,u(t).
By Lemma 2.6, for every r >0andu € 0Q2,,
[T.u] < M, [ G(s,9)h(s)ds,

where M =1+max{f (s)}.

0<s<r

Let A, > O be such that

P
m-2
i Gl
Then for A €(0,4,) and ue€oQ, , ||Tﬂu|| < ||u|| This
means that

Z{(A,u) €(0,0)xK0< A< 4, ueKdu|=r}=¢

AM. (14 )I:G(s,s)h(s)ds:r.

(4.10)

By Lemma 2.5 and Theorem1.1, it follows that is also an
unbounded  component joining (0,0) and [0, c0)
in [0,00)xY  .Thus, (4.10) implies that for

A €(0,4,),(1.4) has at least two positive solutions.
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